Г. Гончиг, М.Б. Данилов, Н.В. Колесникова

РАЗРАБОТКА ТЕХНОЛОГИИ РУБЛЕНЫХ ПОЛУФАБРИКАТОВ ИЗ МЯСА ОВЕЦ МОНГОЛЬСКОГО ЭКОТИПА

Разработана технология рубленых полуфабрикатов из мяса овец монгольского экотипа с использованием белково-жировой эмульсии, в состав которой входили высокомолекулярный белок животного происхождения «Типро-601», жир-сырец бараний, масло растительное, пищевой фосфат «Биофос-90» и вода для гидратации белка.

Выявлены зависимости функционально-технологических свойств котлетного фарша и качественных показателей рубленых полуфабрикатов от дозы вносимых белково-жировых эмульсий. Установлено, что фаршевые системы, содержащие 25 % эмульсии сложного состава, имеют высокие значения влагосвязывающей, водоудерживающей способностей и стабильность при тепловой обработке. Выявлено, что использование многокомпонентной белково-жировой эмульсии при производстве рубленых полуфабрикатов из баранины способствует получению готового продукта высокого качества.

Технология, рубленые полуфабрикаты, белково-жировая эмульсия, свойства, баранина.

Введение

Насыщение рынка высококачественными продуктами питания является одной из важнейших социальных проблем государственного масштаба. Рациональное использование пищевого сырья, разработка и совершенствование существующих технологий мясных продуктов предопределяют современную систему создания устойчивой продовольственной основы страны.

На решение этих проблем направлено и комплексное использование баранины как одного из основных видов сырья мясной промышленности Монголии.

В животноводстве Монгольской Республики на долю овцеводства приходится 42,2 % всего поголовья скота [1].

Производство готовых изделий из баранины в промышленных масштабах еще не получило должного развития. Одной из главных причин этого является ограниченность ассортимента продуктов из баранины. В то же время есть все основания ожидать, что резкое увеличение поголовья овец и производства баранины потребует увеличения выработки готовых изделий из баранины.

В связи с этим весьма актуальной становится задача по разработке технологии и рецептур новых видов мясопродуктов из баранины.

Цель работы – разработка технологии рубленых полуфабрикатов из мяса овец с использованием многокомпонентных белково-жировых эмульсий.

Материалы и методы

Объектами исследования в работе являлись котлетное мясо овец монгольского экотипа в полуторагодичном возрасте, белково-жировые эмульсии, полуфабрикаты и готовые продукты.

Потребительские свойства баранины характеризовали по химическому, аминокислотному и жирнокислотному составам и функциональнотехноло-гическим характеристикам котлетного фарша.

Содержание нутриентов баранины определяли по содержанию влаги (метод высушивания навески

до постоянного веса при температуре 102–105 °C), белка (метод Кьельдаля), жира (метод Сокслета) и золы (метод сухого озоления).

Аминокислотный состав белков определяли методом ионообменной хроматографии с использованием AAA-339.

Жирнокислотный состав липидов определяли методом газожидкостной хроматографии.

Функционально-технологические свойства (ΦTC) характеризовали по совокупности характеризующих показателей, уровни влагосвязывающей (ВСС) (метод Грау и Хамма в модификации ВНИИМПа) и водоудерживающей ВНИИМПа) (ВУС) (метод способностей. стабильности фаршевой эмульсии (СЭ) и потерь при тепловой обработке (метод ВНИИМПа), а также по уровню рН среды (потенциометрический метод).

Результаты и их обсуждение

В комплексе показателей, определяющих потребительские свойства продуктов питания, пищевая ценность является одной из главных, которая во многом обусловлена химическим составом и свойствами исходного сырья. С целью рационального использования баранины монгольской породы овец, выращенных в степной зоне, необходимы знания его состава и свойств.

Сравнительный анализ химического состава мяса овец различных экотипов и говядины представлен в табл. 1.

Результаты исследования показывают, что массовая доля влаги в баранине различных экотипов различается и в среднем составляет в мясе овец 61,6 %. Установлено, что характерной особенностью монгольских овец является сравнительно высокая сальная продуктивность, что, вероятно, обусловлено природными условиями их выращивания. Это непосредственно сказывается на пищевой ценности мяса.

Химический состав мяса

	Баранина			
Показатель	мон- голь- ская	бурят- ская*	приар- гун- ская*	Говя- дина*
Содержание, %:				
влаги белка жира золы	57,80±0,6 15,50±0,5 25,40±0,1 0,78±0,25	58,20 17,70 23,10 1,00	68,7 21,0 9,3 1,0	72,5 19,0 7,5 1,0
Соотношение коэффициентов: белок: влага белок: жир	1:3,7 1:1,6	1:3,2 1:1,3	1:3,3 1:0,5	1:3,8 1:0,4
Энергетическая ценность, ккал	290,0±0,2	278,7	167,7	140,00

^{*} Литературные данные [2, 3, 4].

По содержанию белка баранина монгольского экотипа заметно уступает как баранине других экотипов, так и говядине. Эти различия колеблются в пределах от 2,2 до 5,5 %. Наряду с общим содержанием белка для более полной оценки его вклада в биологическую ценность мяса изучили аминокислотный состав баранины (табл. 2).

Таблица 2

Содержание незаменимых аминокислот в баранине

Неза- менимые амино- кислоты	Содержание аминокислот, г на 100 г белка Баранина мон- лит. д.*		Данные ФАО/ВОЗ	
Изолейцин	гольская 4,7±0,22	4,8	4,0	
Лейцин	11,3±0,15	7,7	7,0	
Валин	6,0±03,18 5,5		5,0	
Фенил- аланин	4,1±0,21	3,9	6,0	
Метионин	3,6±0,18	2,3	3,5	
Треонин	7,2±0,25	4,9	4,0	
Триптофан	1,1±0,19	1,2	1,0	
Лизин	4,0±0,35	8,3	5,5	
Сумма * Путаротуру	42,0 38,6		36,0	

^{*} Литературные данные [4].

Анализ данных показывает, что монгольская баранина характеризуется высоким значением незаменимых аминокислот. Необходимо отметить, что превалирующими аминокислотами являются лейцин, метионин, треонин, а дефицитной является лизин. В сравнении с бараниной литературных данных мясо овец монгольского экотипа по содержанию суммы незаменимых аминокислот превышает данный показатель на 8,1 %, что

свидетельствует о высокой биологической ценности мяса овен монгольского экотипа.

Общее количество жира в мясе характеризует прежде всего его энергетическую ценность. Однако липиды являются не только источником энергии для организма, но и содержат ряд физиологических активных веществ. Поэтому важной особенностью, определяющей свойства исследуемого жира, является его жирнокислотный состав (табл. 3).

Таблица 3 Жирнокислотный состав мяса овец разных экотипов и говядины, % (P \leq 0,5)

	Виды мяса		
	Бара		
Наименование жирных кислот, %	мон- голь- ская	лит. д.*	Говя- дина*
Насыщенные: С _{12:0} лауриновая С _{14:0} миристиновая С _{15:0} пентадеценовая С _{16:0} изопальмитиновая С _{16:0} пальмитиновая С _{17:0} маргариновая С _{18:0} стеариновая С _{20:0} арахиновая С _{23:0} бегеновая	39,91 0,08 1,15 0,65 - 15,62 2,12 18,62 0,18 0,13	46,7 0,2 2,2 0,4 - 23 2 17 1,6 0,3	66,33 - 1,0 1,9 - 22,24 1,8 39,4 - -
Мононенасыщенные: $C_{14:1}$ миристолеиновая $C_{16:1}$ пальмитолеиновая $C_{18:1}$ олеиновая	46,07 - 1,93 44,14	47,0 - 6 41	27,47 2,53 2,0 22,94
Полиненасыщенные: С _{18:2} линолевая С _{18:3} линоленовая С _{18:4} арахидоновая С _{20:5} эйкозатриеновая С _{20:3} эйкозадиеновая С _{22:6} докозагексаеновая	14,83 3,59 0,11 6,1 3,73 0,46 0,84	7,74 3 0,14 4 0,1 0,1 0,4	6,2 3,50 1,96 0,7 - -
Итого	100,0	100,0	100,0

^{*} Литературные данные [4].

Из табл. 3 видно, что преобладающими жирными кислотами в баранине, так же как и в говядине, являются: из насыщенных жирных кислот (НЖК) пальмитиновая И стеариновая. Необходимо отметить, что такие НЖК, как арахиновая и бегеновая, характерны только для баранины. Из мононенасыщенных (МНЖК) превалирующими являются пальмитолеиновая и олеиновая, а из полиненасыщенных (ПНЖК) – линолевая и арахидоновая. Такие ПНЖК, как эйкозатриеновая, эйкозадиеновая и докозагексаеновая, характерны только для баранины, количество которых в мясе монгольского экотипа овен значительно. Содержание ПНЖК в баранине монгольского экотипа превышает этот показатель по другим видам сырья почти в 2 раза. Это указывает на достаточно высокую биологическую ценность жирового компонента баранины монгольской

породы. Содержание НЖК в бараньем жире монгольской породы меньше, чем в говядине, на 39,8 %, а МНЖК больше на 40,3 %.

Таким образом, жирнокислотный состав бараньего жира овец монгольского экотипа в большей степени сбалансирован, нежели в говядине.

Функционально-технологические свойства являются важным фактором в формировании качества мясных продуктов. Данных, касающихся ФТС мяса овец монгольского экотипа, в литературных источниках нами не обнаружено, поэтому дальнейшие исследования были направлены на изучение этих свойств.

ФТС мяса овец различных экотипов в сравнении с говядиной представлены в табл. 4.

Анализ данных показывает, что **BCC** монгольской баранины уступает ВСС баранины бурятской породы и говядины на 1,0 % и 11,0 % соответственно. Аналогичная зависимость установлена и при изучении других функциональнотехнологических свойств мяса. Данные исследований свидетельствуют, что монгольская более баранина характеризуется грубой консистенцией, поэтому промышленной для необходимо переработки такого сырья предусмотреть ряд мероприятий, способствующих улучшению его функционально-технологических свойств.

Таблица 4 Функционально-технологические свойства мясного сырья

	Виды сырья			
Показатель	Барани	Г		
TTORUSTUSID	монголь- ская	бурят- ская	Говя- дина*	
BCC, %	67,0±0,51	68,0	78,0	
ВУС, % к влаге в системе	60,1±0,49	62,0	70,0	
СЭ, %	60,2±0,22	63,9	70,4	
Потери при тепловой обработке, %	28,7±1,2	24,5	15,3	
рН среды	5,8±0,1	5,7	6,2	

^{*} Литературные данные [2].

Так, в частности, для повышения ФТС при производстве рубленых полуфабрикатов была предусмотрена белково-жировая эмульсия (БЖЭ), содержащая высокомолекулярный белок животного происхождения «Типро-601», жир-сырец бараний, масло растительное, пищевой фосфат «Биофос-90» и воду для гидратации белка (табл. 5).

Выбор ингредиентов БЖЭ был обусловлен их функционально-технологическими свойствами и требуемыми органолептическими показателями готового продукта. Так, использование животного белка «Типро-601» совместно с другими компонентами стабилизирует фаршевую эмульсию. Белковая добавка обладает свойствами,

аналогичными миофибриллярным белкам, после термической обработки способна образовывать структурную матрицу, удерживающую влагу и фиксирующую жировые частицы. В связи с этим монолитность продукта улучшается [5]. Для повышения стабильности мясной эмульсии в БЖЭ вводили фосфаты «Биофос-90». Фосфаты, вызывая изменение величины рН-среды, повышая ионную силу растворов и связывая ионы Ca²⁺, увеличивают уровень ВСС и повышают вязкость фарша [6].

Таблица 5 Рецептура белково-жировой эмульсии

Наименование компонентов	Количество, %
Животный белок «Типро- 601»	10,0
Жир-сырец бараний	15,0
Масло растительное	25,0
Фосфаты «Биофос-90»	0,8
Вода для гидратации белка	49,2
Итого	100

Полученные результаты свидетельствуют, что ΦTC опытных образцов фаршевых систем выше, чем в контроле.

С учетом ФТС сырья была выбрана рациональная доза вводимой БЖЭ (25 % к массе несоленого сырья), обеспечивающая улучшение качества сырья и повышающая выход готового продукта.

Дальнейшее увеличение дозы БЖЭ не приводило к заметному улучшению ФТС (табл. 6).

Таблица 6 Влияние эмульсий на ФТС фарша из баранины

	Образцы фарша, изготовленные				
Показатель	по традиционной технологии	с использованием многокомпонентной БЖЭ, % к массе сырья			ной
	контроль	10	15	20	25
BCC, %	67,0	70,3	75,6	80,3	86,4
ВУС, % к влаге в системе	60,1	65,4	69,4	75,4	79,5
СЭ, %	60,1	68,7	74,2	78,6	80,0
Потери при тепловой обработке, %	28,7	23,5	22,7	19,4	15,0
рН, ед.	5,8	5,8 5,85 5,9 6,08		6,2	

Следующим этапом работы являлась разработка технологии и рецептур рубленых полуфабрикатов (табл. 7).

Производственная проверка показала, что вырабатываемые рубленые полуфабрикаты соответствуют требованиям стандарта и характеризуются высокими потребительскими свойствами.

Таблица 7

Рецептура котлет

Наименование	Норма, кг на 100 кг сырья		
сырья и материалов	Контроль: «Кебатчета баранья»	Опыт: «Амтатай»	
Мясо котлетное баранье	70,0	70,0	
Мясо котлетное свиное	30,0	5,0	
ЕЖӘ	_	25,0	
Итого	100,0	100,0	
Соль поваренная пищевая	1,6	1,6	
Лук репчатый свежий очищенный	10,0	10,0	
Пряности	1,8	1,8	
Яйцо куриное	1,0	1,0	

Анализ мясопродуктов показывает, использование БЖЭ способствует увеличению ВСС хорошей фаршевых систем, формированию консистенции И высоких органолептических показателей, значительно снижает потери при термической обработке и повышает пищевую ценность котлет.

Таким образом, в результате проведенных исследований:

- разработана рецептура рубленого полуфабриката из мяса овец монгольского экотипа с высокими потребительскими свойствами;
- при исследовании химического состава мяса овец монгольского экотипа установлено, что оно отличается более высоким содержанием жира (25,4 %) и более низким белка (15,5 %) по сравнению с мясом других пород;
- установлено, что баранина монгольская обладает высокой биологической ценностью. Сумма незаменимых аминокислот составляет 42 мг на 100 г белка, что превышает этот показатель на 8,1 % по сравнению с литературными данными;
- выявлены зависимости ФТС от дозы вносимых БЖЭ. Установлено, что фаршевые системы, содержащие 25 % эмульсий сложного состава, имеют высокие значения ВСС, ВУС и стабильность. Использование БЖЭ сложного состава при производстве мясопродуктов способствует получению изделий с высокими потребительскими свойствами.

Список литературы

- 1. Янжив Нямаа. Овцы мясного направления породы алтанбулаг. Улан-Батор, 2008. 166 с.
- 2. Цыденов, Д.А. Научное обоснование использования баранины для производства варено-копченых продуктов / Д.А. Цыденов, Н.В. Колесникова, М.Б. Данилов, Т.А. Мелихова // Сборник молодых ученых Сибири. Улан-Удэ, 2008. С. 182–184.
- 3. Дорошкевич, Е.Н. Изучение биологической ценности баранины Забайкальской породы / Е.Н. Дорошкевич, В.Г. Варламова, Ж.А. Арсентьева, Н.В. Колесникова // Экологически безопасные ресурсосберегающие технологии и средства переработки сельскохозяйственного сырья и производства продуктов питания: VIII Междунар. науч. конф. М.: МГУПБ, 2009. С. 142–143.
 - 4. Скурихин, И.М. Химический состав пищевых продуктов / И.М. Скурихин. М.: Агропромиздат, 1987. 224 с.
- 5. Колесникова, Н.В. Использование белково-жировых эмульсий в колбасном производстве: учеб.-практ. пособие / Н.В. Колесникова и др. Улан-Удэ: Изд-во ВСГТУ, 2009. 80 с.
- 6. Жаринов, А.И. Цельномышечные и реструктурированные мясопродукты: краткие курсы по основам современных технологий переработки мяса, организованные фирмой «Протеин Технолоджиз Интернетнл» (США) / А.И. Жаринов, О.В. Кузнецова, Н.А. Черкашина. М., 1997. 176 с.

ГОУ ВПО «Восточно-Сибирский государственный технологический университет», 670013, Россия, Республика Бурятия, г. Улан-Удэ, ул. Ключевская, 40в. Тел.: (3012) 41-72-18

Факс: (3012) 43-14-15 e-mail: office@esstu.ru

SUMMARY

G. Gonchig, M.B. Danilov, N.V. Kolesnikova

Development of convenience foods technology from meat of Mongolian ecotype sheep

Technology of minced convenience foods from meat of Mongolian ecotype sheep using a protein-fat emulsion composed of high-molecular protein of animal origin «Tipro-601», mutton raw-fat, vegetable oil, food phosphate «Biophos-90» and water for protein hydration, has been developed.

Relationship of functional and technological properties of cutlet minced meat and quality indices of chopped convenience foods with a dose of the protein-fat emulsion introduced has been established. It has been found that minced meat systems, containing 25 % compound emulsion, have high indices of moisture-biding and water-holding capacities, and are stable and resistant upon heat treatment. It has been revealed that application of a multi-component protein-fat emulsion in the production of minced convenience foods from mutton ensures the manufacture of the product with high consumer properties.

Technology, minced convenience foods, protein-fat emulsion, properties, mutton.

SEA HPE «East Siberia state university of technology» 670013, Republic Buryatia, Ulan-Ude, str. Kluchevskaya, 40v.

Tel.: (3012) 41-72-18 Fax: (3012) 48-14-15 e-mail: office@esstu.ru